Integrable Systems 1st Edition by Ahmed Lesfari 1119988578 9781119988571 – Ebook PDF Instant Download/DeliveryISBN:
Full dowload Integrable Systems 1st Edition after payment.
Product details:
ISBN-10 : 1119988578
ISBN-13 : 9781119988571
Author: Ahmed Lesfari
This book illustrates the powerful interplay between topological, algebraic and complex analytical methods, within the field of integrable systems, by addressing several theoretical and practical aspects. Contemporary integrability results, discovered in the last few decades, are used within different areas of mathematics and physics.
Integrable Systems 1st Table of contents:
1 Symplectic Manifolds
1.1. Introduction
1.2. Symplectic vector spaces
1.3. Symplectic manifolds
1.4. Vectors fields and flows
1.5. The Darboux theorem
1.6. Poisson brackets and Hamiltonian systems
1.7. Examples
1.8. Coadjoint orbits and their symplectic structures
1.9. Application to the group SO(n)
1.10. Exercises
2 Hamilton–Jacobi Theory
2.1. Euler–Lagrange equation
2.2. Legendre transformation
2.3. Hamilton’s canonical equations
2.4. Canonical transformations
2.5. Hamilton–Jacobi equation
2.6. Applications
2.7. Exercises
3 Integrable Systems
3.1. Hamiltonian systems and Arnold–Liouville theorem
3.2. Rotation of a rigid body about a fixed point
3.3. Motion of a solid through ideal fluid
3.4. Yang–Mills field with gauge group SU(2)
3.5. Appendix (geodesic flow and Euler–Arnold equations)
3.6. Exercises
4 Spectral Methods for Solving Integrable Systems
4.1. Lax equations and spectral curves
4.2. Integrable systems and Kac–Moody Lie algebras
4.3. Geodesic flow on SO(n)
4.4. The Euler problem of a rigid body
4.5. The Manakov geodesic flow on the group SO(4)
4.6. Jacobi geodesic flow on an ellipsoid and Neumann problem
4.7. The Lagrange top
4.8. Quartic potential, Garnier system
4.9. The coupled nonlinear Schrödinger equations
4.10. The Yang–Mills equations
4.11. The Kowalewski top
4.12. The Goryachev–Chaplygin top
4.13. Periodic infinite band matrix
4.14. Exercises
5 The Spectrum of Jacobi Matrices and Algebraic Curves
5.1. Jacobi matrices and algebraic curves
5.2. Difference operators
5.3. Continued fraction, orthogonal polynomials and Abelian integrals
5.4. Exercises
6 Griffiths Linearization Flows on Jacobians
6.1. Spectral curves
6.2. Cohomological deformation theory
6.3. Mittag–Leffler problem
6.4. Linearizing flows
6.5. The Toda lattice
6.6. The Lagrange top
6.7. Nahm’s equations
6.8. The n-dimensional rigid body
6.9. Exercises
7 Algebraically Integrable Systems
7.1. Meromorphic solutions
7.2. Algebraic complete integrability
7.3. The Liouville–Arnold–Adler–van Moerbeke theorem
7.4. The Euler problem of a rigid body
7.5. The Kowalewski top
7.6. The Hénon–Heiles system
7.7. The Manakov geodesic flow on the group SO(4)
7.8. Geodesic flow on SO(4) with a quartic invariant
7.9. The geodesic flow on SO(n) for a left invariant metric
7.10. The periodic five-particle Kac–van Moerbeke lattice
7.11. Generalized periodic Toda systems
7.12. The Gross–Neveu system
7.13. The Kolossof potential
7.14. Exercises
8 Generalized Algebraic Completely Integrable Systems
8.1. Generalities
8.2. The RDG potential and a five-dimensional system
8.3. The Hénon–Heiles problem and a five-dimensional system
8.4. The Goryachev–Chaplygin top and a seven-dimensional system
8.5. The Lagrange top
8.6. Exercises
9 The Korteweg–de Vries Equation
9.1. Historical aspects and introduction
9.2. Stationary Schrödinger and integral Gelfand–Levitan equations
9.3. The inverse scattering method
9.4. Exercises
10 KP–KdV Hierarchy and Pseudo-differential Operators
10.1. Pseudo-differential operators and symplectic structures
10.2. KdV equation, Heisenberg and Virasoro algebras
10.3. KP hierarchy and vertex operators
10.4. Exercises
People also search for Integrable Systems 1st:
non integrable systems
discrete integrable systems
stable bundles and integrable systems
introduction to classical integrable systems
yang baxter equation in integrable systems